Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling.

نویسندگان

  • L C Murtaugh
  • J H Chyung
  • A B Lassar
چکیده

Previous work has indicated that signals from the floor plate and notochord promote chondrogenesis of the somitic mesoderm. These tissues, acting through the secreted signaling molecule Sonic hedgehog (Shh), appear to be critical for the formation of the sclerotome. Later steps in the differentiation of sclerotome into cartilage may be independent of the influence of these axial tissues. Although the signals involved in these later steps have not yet been pinpointed, there is substantial evidence that the analogous stages of limb bud chondrogenesis require bone morphogenetic protein (BMP) signaling. We show here that presomitic mesoderm (psm) cultured in the presence of Shh will differentiate into cartilage, and that the later stages of this differentiation process specifically depend on BMP signaling. We find that Shh not only acts in collaboration with BMPs to induce cartilage, but that it changes the competence of target cells to respond to BMPs. In the absence of Shh, BMP administration induces lateral plate gene expression in cultured psm. After exposure to Shh, BMP signaling no longer induces expression of lateral plate markers but now induces robust chondrogenesis in cultured psm. Shh signals are required only transiently for somitic chondrogenesis in vitro, and act to provide a window of competence during which time BMP signals can induce chondrogenic differentiation. Our findings suggest that chondrogenesis of somitic tissues can be divided into two separate phases: Shh-mediated generation of precursor cells, which are competent to initiate chondrogenesis in response to BMP signaling, and later exposure to BMPs, which act to trigger chondrogenic differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dev105981 3848..3858

Pluripotent embryonic stem cells (ESCs) generate rostral paraxial mesoderm-like progeny in 5-6 days of differentiation induced by Wnt3a and Noggin (Nog). We report that canonical Wnt signaling introduced either by forced expressionof activated β-catenin, or the small-molecule inhibitor of Gsk3, CHIR99021, satisfied the need for Wnt3a signaling, and that the small-molecule inhibitor of BMP type ...

متن کامل

Dev111906 3978..3987

The relative timing of SHH and BMP signals controls whether presomitic mesoderm (PSM) cells will adopt either a chondrogenic or lateral plate mesoderm fate. Here we document that SHH-mediated induction of Nkx3.2 maintains the competence of somitic cells to initiate chondrogenesis in response to subsequent BMP signals by repressing BMP-dependent induction of GATA genes. Conversely, administratio...

متن کامل

Designing of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold

Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...

متن کامل

HhAntag, a Hedgehog Signaling Antagonist, Suppresses Chondrogenesis and Modulates Canonical and Non-Canonical BMP Signaling.

Chondrogenesis subtends the development of most skeletal elements and involves mesenchymal cell condensations differentiating into growth plate chondrocytes that proliferate, undergo hypertrophy, and are replaced by bone. In the pediatric disorder Hereditary Multiple Exostoses, however, chondrogenesis occurs also at ectopic sites and causes formation of benign cartilaginous tumors--exostoses--n...

متن کامل

Regulation of BMP-dependent chondrogenesis in early limb mesenchyme by TGFbeta signals.

In the developing axial skeleton, sequential sonic hedgehog (SHH) and bone morphogenetic protein (BMP) signals are required for specification of a chondrogenic fate in presomitic tissue. A similar paradigm is thought to operate in the limb, but the signals involved are unclear. To investigate the nature of these signals, we examined BMP action in mesenchymal populations derived from the early m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 1999